Поговорим о винтах (Просматривают: 11)

Поговорим о винтах
Граждане, подскажите.
Есть ли преимущество у четырехлопастного винта перед трехлопастным?
Читал, что на 4-х лопастном упор больше,. но как я думаю, и трение об воду у него на четверть больше..
Просветите..))
Я думаю - балансировка лучше. Такое преимущество стоит рассматривать?
 
Поговорим о винтах
Не факт, что то же соотношение скоростей эти винты покажут при загрузке два человека. А если ещё плюс шмудяк?
 
Поговорим о винтах
Не факт, что то же соотношение скоростей эти винты покажут при загрузке два человека. А если ещё плюс шмудяк?
А нафига покупать винт 12" шага под груженую лодку? Все равно мотор не вытянет обороты. Есть винты 11", 10", 9" шагов под увеличивающююся загрузку.
 
Поговорим о винтах
Если кому интересно, вот статья по винтам.


Поразительно, насколько два совершенно идентичных лодочных двигателя ведут себя по-разному на, казалось бы, одинаковых лодках. Английский эксперт Пауль Леммер дает пояснения и ценные советы по установке и настройке двигателя.

Его подход несколько отличается от традиционной методики, изложенной в русских книгах. Однако зачастую, именно стороннее мнение может привести к оптимальному решению.

Признайтесь, что не раз удивлялись тому, насколько по-разному ведут себя на воде два идентичных лодочных мотора на практически одинаковых лодках.

В отличие от автомобилей или пластиковых лодочек, изготавливаемых методом штамповки и потому так похожих в движении и с мотором и под веслами, подвесные двигатели собираются вручную, впрочем, также как и надувные лодки. Поэтому и надувные лодки на воде то же ведут себя по-разному.

Одна из причин определяется разными конфигурациями профиля днища, которое обладает своими особыми гидродинамическими характеристиками. Для установки мотора на лодку каждый раз заново приходится выбирать наилучшее место, что вообще-то является длительной процедурой. Большинство изготовителей надувных лодок и, особенно RIB лодок, заранее производят замеры и наносят на транец лодки контуры крепления мотора, указывая пользователю, что это лучшее место крепления мотора. Однако, признавая способность мастерового создать хорошую, красивую и надежную надувную лодку, мы не можем быть уверены в том, что изготовитель лодки одновременно является и экспертом по моторам, особенно для такого сложного изделия, как RIB-лодка.

Есть специалисты, вооруженные лучшими инструментами и научными знаниями гидро- и аэродинамики, которые могут идеальным образом настроить судно для гонок на рекордных скоростях. Взяв самый мощный мотор, такой специалист всегда навесит его на транце повыше, причем сместит его поближе к правому борту, что и обеспечит, в конечном итоге, лучшие скоростные показатели и управляемость судна на гонках, но такая навеска мотора не всегда может быть наилучшей.

Форма днища, распределение груза, размеры двигателя и его вес по отношению к массе лодки и, прежде всего, тип винта - все это влияет на выбор места установки двигателя.

Для примера рассмотрим 5.5-метровую надувную лодку с гладким пластиковым днищем профиля с консолью управления, четырьмя сиденьями, топливным баком, топом в виде А-образной рамы, дистанционным управлением и подвесным мотором среднего размера мощностью в 50-115 л.с.

По теории, мотор должен быть смещен к правому борту на 5 см для компенсации вращающего момента, создаваемого вращением винта. Такого небольшого смещения может быть достаточно для компенсации лодки из-за вращающего момента винта, хотя с некоторыми днищами такие рекомендации не работают. Чем мельче профиль , тем меньшее смещение требуется к правому борту, в то время как сравнительно более заглубленное днище потребует и большего смещения мотора на транце. Некоторые днища имеют специальные профили, компенсирующие эту силу, так что и смещения мотора от центрального сечения может не потребоваться.

Определив желаемую величину смещения мотора на транце, нужно выбрать правильную высоту установки мотора. При этом окажется, что важнейшим, если не определяющим фактором является расстояние от обреза днища до антикавитационной плиты на дейдвуде мотора. По мнению автора статьи, антикавитационная плита должна располагаться на 2 см выше обреза днища лодки. Такая установка обеспечивает наилучшие условия для эксплуатации подвесного мотора. Из этого положения мотор всегда может быть поднят при помощи традиционных подъемных средств, шаг за шагом, для выбора подходящей высоты навески на различных скоростях движения. В общем же случае, чем выше мотор навешен, тем эффективнее он работает, разумеется, если не принимать во внимание ущерб от кавитации винту и мотору.

Стандартная 5,5-метровая RIB-лодка должна позволять смещать мотор на одну проушину крепления мотора без необходимости смены винта. Для этого антикавитационную плиту можно разместить примерно на 4 см выше линии обреза днища: это упростит регулировку положения мотора по высоте и тем самым улучшит ходовые характеристики лодки. Удаление антикавитационной плиты от обреза днища должно сопровождаться смещением мотора на транце относительно центрального сечения корпуса лодки.

Замена легкого алюминиевого винта на стальной, резко повысит эффективность работы двигателя. Выбор винта для мотора - процесс творческий и напоминает выбор покрышек или амортизаторов для автомобиля для достижения наилучшего соотношения между нагрузкой и жесткостью подвески. Никто без эксперимента не возьмет на себя смелость рекомендовать тип винта для условий.

Проще и быстрее это сделают специалисты, которые смогут понять потребности владельца судна и подобрать винт для конкретного применения.

Некоторые изготовители лодок используют винты собственной разработки. Это дороже, но такой винт позволит пользователю лодки не ошибиться в выборе.

Правильно подобранный винт может заставить надувную лодку просто . На рынке имеется огромное количество великолепных винтов "Cleaver", "Spoon blade", "Cupped", "Hi-five", "Raker", "Ballistic", "Laser", "Over-hub" и "Thru-hub" - для любых условий и любых моторов, что позволяет добиваться самых лучших показателей совместной работы RIB-лодки и мотора.

Идеальным винтом считается тот, который позволит мотору развить максимально возможное количество оборотов при 80%-ной загрузке лодки. Если максимальные обороты достигнуты при полной загрузке судна, то мотор может превысить допустимые обороты при неполной загрузке лодки. С другой стороны, если самые большие обороты мотор развивает при небольшой загрузке лодки, то при увеличении нагрузки мотор будет . В результате того, что слишком малая и слишком большая загрузка лодки увеличивает потребление топлива и сокращают расстояние, которое можно пройти на единицу расхода горючего, становится понятной важность правильного подбора винта для наиболее часто используемой загрузки лодки. У винта, вообще-то, всего два измерения: диаметр и шаг. Диаметр - это наибольший размер винта по лопастям. Для грузовых лодок рекомендуются винты большего диаметра, что позволяет судну уверенно чувствовать себя при полной нагрузке. Шаг винта - это длина винтовой поверхности, образуемая лопастью винта за один оборот. Этот параметр необходимо учитывать для обеспечения условий движения лодки с высокими скоростями и, при этом, экономично.

Увеличение шага винта, при одних и тех же оборотах мотора позволит существенно увеличить скорость судна. Это не только повысит эффективность работы двигателя, но и уменьшит удельное потребление топлива, а также повысит управляемость лодки на скоростных поворотах.

Определяющим также является материал, из которого изготовлен винт. Это, зачастую, даже важнее, чем мощность мотора. Для моторов мощностью 50-110 л.с. лучший выбор - алюминиевые или стальные нержавеющие винты. Алюминий - дешевле, мягче и более гибок. А потому, алюминиевые винты наилучшим образом подходят к лодкам для отдыха на воде или для коммерческого применения, когда скорость и эффективность мотора не являются ключевыми параметрами. Алюминиевые винты под нагрузкой могут прогибаться, что особенно заметно на мощных моторах, что вызывает кавитацию и выход винта из воды с одновременной потерей скорости. Замена алюминиевого винта на стальной сразу же заметно скажется на характеристиках лодки. Поскольку лопасти стальных винтов обычно совсем не гнутся, именно с такими винтами можно смело поднимать крепление двигателя на одно отверстие вверх в целях подбора наилучших параметров для работы мотора.

Форма лопастей винта - важный параметр эффективной работы мотора. Стальные винты всегда лучше при любой форме лопастей: простая замена алюминиевого винта на стальной позволит достичь максимальной эффективности мотора без всяких дополнительных настроек. И, тем не менее, при установке мотора всегда следует обращать внимание на два момента: во-первых, следует убедиться, что при больших углах отклонения мотора на максимальном ходу не возникает кавитации и, во-вторых, что система водяного охлаждения работает устойчиво. Всас системы водяного охлаждения располагается на дейдвуде прямо над редуктором вала винта. Очевидно, что при любом режиме движения для надежного охлаждения мотора это отверстие должно быть под водой. Датчики температуры, как правило, мало эффективны, а глазом мало что увидишь, поэтому большинство современных подвесных моторов оборудованы системой защиты от перегрева и при повышении температуры корпуса выше допустимого предела - мотор обычно сбрасывает обороты.

Аккуратной навеске лодочного мотора и выбору правильного винта нередко уделяется слишком мало внимания в инструкциях, поэтому мы советуем любому владельцу лодки найти время и силы для регулировки положения мотора на транце и подбора наилучшего типа винта: это быстро окупится возросшими возможностями лодки и экономичностью ее эксплуатации.

Выжимаем скорость

Подбор и доработка гребного винта

Иногда создается впечатление, что для отечественных водномоторников этот показатель является чуть ли не определяющим, способным полностью затмить все прочие качества мотолодки или катера. По крайней мере, именно "скоростная" тема подвергается в определенных кругах наиболее живому обсуждению, а после редакционных тестов нам с завидным постоянством задают один и тот же вопрос: "Ну, сколько едет?" Что ж, в стремлении двигаться побыстрей нет ничего дурного. На достижение этой цели направлена значительная часть усилий конструкторов и судостроителей, но многое зависит и от нас самих, конечных потребителей. Наиболее важный фактор в деле достижения максимальной скорости - это грамотный подбор гребного винта. На эту животрепещущую тему мы и побеседовали с нашим постоянным консультантом, одним из сильнейших спортивных винтовиков страны Александром Беляевским.

По словам Александра, только за счет этого на серийной прогулочной лодке со стандартным мотором можно добиться до 10% прироста "максималки". Впрочем, одним лишь подбором готовых винтов, как правило, не обойтись - фанату скорости, поставившему себе цель выжать из лодки и мотора все возможное, надо быть готовым к тому, что винт придется подвергнуть некоторой доработке. Вообще-то дело это не из простых, особенно когда речь идет о гонках или установлении рекордов - недаром даже именитые гонщики прибегают при этом к услугам специалистов, но на"потребительском" уровне неплохих результатов можно добиться и "малой кровью", когда каких-либо особых знаний и навыков, а также специального оборудования не понадобится - необходимо лишь умение держать в руках напильник.

Но для начала, чтобы более отчетливо понимать, что придется сделать и почему, освежим в памяти несколько теоретических моментов.

Три кита

Как правило, большинству даже начинающих водномоторников известна разница между "тяжелым" и "легким" гребными винтами (о тех, кто при этом применяет метод взвешивания в руках, речь в данном случае не идет). Понятно также, что сами по себе винты не могут относиться к той или иной категории - употребляются эти понятия только применительно к конкретному комплекту "лодка плюс мотор" с определенной нагрузкой. "Тяжелый" не позволяет мотору развить рабочие обороты, а с "легким" стрелка тахометра уходит за пределы шкалы.

В обоих случаях двигатель работает в неоптимальном режиме и не выдает всей заложенной в него мощности. Многие возлагают ответственность за это исключительно на такой показатель, как шаг винта (рис. 1), определяемый углом наклона его лопастей относительно ступицы. (Рискуя навлечь на себя гнев истинных "технарей", все же определим его для простоты дела как расстояние, которое прошел бы винт за один полный оборот, будь он не в воде, а в твердых ответных направляющих - наподобие болта, ввертываемого в гайку).



Рис. 1 Шаг винта можно условно представить как расстояние, котороe он пройдёт за один оборот в неподвижном и жестком резьбовом канале (а). Многие спрашивают, не изменяется ли шаг по длине лопасти, ведь каждая из них тоже "закручивается винтом". Нет, подавляющее большинство винтов для подвесных моторов имеют один и тот же шаг что у ступицы, что на концах лопастей. Разница углов объясняется разницей диаметров и, соответственно, длин окружностей. Вот, например, под какими углами располагается на разных диаметрах лопасть у гребного винта шагом 400 мм и диаметром 420 мм (б). Кстати, именно так и делаются угольники для контроля винта на шаговой плите. Винты с переменным по длине лопасти шагом можно встретить только у спортсменов, и достигается это, как правило, рихтовкой. На рисунке (в) показано построение контрольных угольников для того же винта, шаг которого начиная с диаметра 200 мм либо увеличен до 45° мм (красные линии), либо уменьшен до 35° мм (синие линии).





Изменение шага действительно позволяет привести обороты мотора в норму: при "недокруте" ставим винт меньшего шага ("полегче"), при "пе-рекруте" - наоборот. Казалось бы, цель достигнута - используются все 100% мощности, так что, вроде бы, и максимальной скорости мы добились. Но не все так просто, и скоростные резервы наверняка остались неисчерпанными.

Для того чтобы понять причину, вновь обратимся к параллели с болтом и гайкой. Если, скажем, использовать электрический гайковерт, то болт с более крупным шагом нарезки будет завернут на место раньше такого же, но с мелкой резьбой. Причем быстрее определенного предела выполнить эту работу не выйдет, поскольку скорость продвижения болта ограничена двумя неизменными показателями - частотой вращения патрона и шагом резьбы.

Все сказанное можно в какой-то мере отнести и к гребному винту, установленному на лодке - за тем лишь исключением, что работает он в воде и по причине проскальзывания перемещается при каждом обороте не на заложенную величину шага, а на меньшее расстояние. И даже если этим "отставанием", которое вызывается не только особенностями среды, но и рядом других факторов, пренебречь, у него тоже есть свой скоростной "потолок", зависящий от частоты вращения и шага.

Определить его можно при помощи такой простейшей формулы, как VT=0.001524nhk, где VT - "идеальная" скорость в километрах в час, h - шаг винта в дюймах, n - рабочая частота вращения коленвала в оборотах в минуту и k - передаточное отношение понижающего редуктора, обычно отображаемое в виде дроби, например, 12:37. Так, с двухтактным "Mercury 50" (редуктор 1:1.83, рабочая частота вращения 5500 об/мин) и 15-дюймовым винтом мы бы "успокоились" на 68.7 км/ч - и то если бы он вращался не в воде, а в жестком резьбовом канале! (Кстати, мощность мотора в данном случае никакой роли не играет - в основе расчетов лежат только число оборотов и шаг).

Чтобы получить цифру, более-менее близкую к реальной, Александр Беляевский советует уменьшать "теоретический" результат на 20%, и здесь проще использовать готовую формулу Vn=0.001219nhk, в которой поправочный коэффициент уже учтен - при тех же условиях получаем 55 км/ч. Конечно, в зависимости от обводов лодки, ее веса и ряда иных факторов разница может оказаться и несколько иной, но в целом с порядком достижимых скоростей мы определились. И если вы рассчитывали на более существенный показатель, остается только увеличивать шаг - заложенную фирмой-изготовителем мотора рабочую частоту вращения коленвала, при которой достигается наиболее оптимальное соотношение мощности, крутящего момента и ресурса, во-первых, просто не удастся увеличить в существенных пределах, а во-вторых, такая мера приведет прежде всего к резкому уменьшению ресурса.

Но вот незадача - винт шагом 15 дюймов мы поставили как раз взамен 17-дюймового, который вполне устраивал нас по расчетной скорости (чуть более 60 км/ч), но на практике оказался чересчур "тяжелым" и не позволял мотору раскрутитьея до положенных оборотов!

Тут сразу вспоминается пословица "нос вытащишь - хвост увязнет", но выход из положения все-таки есть, если не зацикливаться на значении шага и вспомнить про такие показатели винта, как диаметр и дисковое отношение (рис. 2). Оба они так или иначе определяют такой важный фактор, как площадь лопастей, от которого, в свою очередь, напрямую зависят создаваемый упор и сопротивление, влияющие на обороты.



Рис. 2 "Легким" или "тяжелым" применительно к конкретной лодке или мотору винт является не только из-за своего шага - большую роль играют также его диаметр и так называемое дисковое отношение, то есть отношение общей площади лопастей к площади круга, определяемой диаметром. Дисковое отношение влияет и на эффективность винта при разных частотах его вращения. Чем больше, тем лучше приемистость и упор на относительно небольших оборотах, но платить за это приходится некоторым снижением максимальной скорости.

В общем, "тяжелым" или "легким" винт может оказаться не только из-за своего шага - влияние оказывают все три "кита" в равной степени. Можно упомянуть еще и так называемый "отброс" - угол отклонения лопастей относительно гребного вала (рис. 3), но на нашем начальном уровне этот тонкий момент вполне можно опустить.



Рис. 3 Этот угол установки лопасти специалисты именуют "отброс". С его помощью тоже можно сделать винт более "тяжелым" или "легким", но откорректировать его, как и шаг, в домашних условиях достаточно сложно.


И если откорректировать шаг или отброс достаточно сложно (кроме хороших профессиональных навыков и опыта требуется специальное оборудование), то уменьшить площадь лопастей за счет диаметра или дискового отношения с технологической точки зрения проще простого. Именно по такому пути Александр Беляевский и советует пойти при настройке "потребительской" лодки на максимальную скорость.


Коротка у стула ножка...

...Подпилю ее немножко. Чтобы не уподобиться герою популярного стишка, действовать необходимо по принципу "семь раз отмерь, один раз отрежь". Спешка и стремление получить вожделенный результат с первой попытки чреваты риском погубить дорогостоящий винт или в лучшем случае получить слишком "легкий" вариант, пригодный разве что для использования с большой нагрузкой.

Кстати, в идеале стоит иметь на борту как минимум два гребных винта - "скоростной" для экипажа из одного-двух человек без багажа и "грузовой" на те случаи, когда выходить на воду приходится с полным комплектом пассажиров и большим количеством вещей. Надо сказать, что второй вариант, несмотря на название, тоже не остается за флагом борьбы за скорость, и порядок доводки такого винта ничем принципиально не отличается от изложенного ниже.

В ходе подбора и доработки винта нам обязательно понадобится тахометр, а также любой прибор для измерения скорости - приемник GPS или спидометр, работающий по принципу манометра. Не секрет, что последние нередко врут, но, по крайней мере, изменения скорости в ту или иную сторону засечь с их помощью можно.

Итак, порядок действий приблизительно таков.

Первым делом при помощи формулы h=Vп/0.001219nk, представляющей собой преобразованный вариант уже упомянутой зависимости с учетом 20-процентной "скидки", примерно определим, с винтом какого шага можно достичь интересующую скорость. Здесь советуем реально смотреть на вещи и не задавать высот, взять которые заведомо не удастся. В наиболее распространенном диапазоне скоростей 50-60 км/ч лучше теоретически закладывать прибавку примерно в 10-15 км/ч, не более (причем далеко не факт, что получите ее на практике, особенно если вам повезло и проданный в комплекте с мотором винт и без того максимально соответствует лодке). В качестве "стартового ориентира" используйте информацию о максимальных скоростях, достигнутых на аналогичных лодках, а также собственные результаты, полученные с имеющимся винтом.

Имейте в виду, что даже при всех скрытых возможностях пропульсивной установки, позволяющих наращивать скорость, в роли "ограничителя" может выступить сама лодка. У каждого корпуса есть свои скоростные пределы, превышение которых может быть чревато серьезными проблемами с управляемостью, и если с имеющимся винтом на максимальном режиме наблюдается, к примеру, продольная и поперечная раскачка с зарыскиваниями, "разгонять" лодку дальше просто опасно - неприятные симптомы могут выйти на угрожающий уровень.

В первом приближении подыскать винт необходимого шага для той или иной модели мотора лучше всего при помощи специальных таблиц, в которых указаны весовые и размерные показатели лодок - их публикуют практически все фирмы-производители подвесных моторов и гребных винтов. В принципе, приведенные в них рекомендации более-менее соответствуют действительности, хотя доверять указанным показателям скорости можно далеко не всегда - нередко они слишком близки к "идеальным" расчетным цифрам. Хорошо, если перед покупкой у вас есть возможность испытать сразу несколько вариантов, отличающихся по шагу и диаметру. Некоторые торговые фирмы специально держат комплект "тестовых" винтов на подобные случаи, но такая практика, увы, не столь широко распространена.

Поскольку вы нацелены на максимальную скорость, винт-основа потребуется максимально большого шага, и вполне естественно, что он окажется для вашей лодки тяжеловат, тем более что и диаметр с учетом последующей обработки рекомендуется выбирать самый большой из имеющихся. Но, тем не менее, при выборе соблюдайте два простых правила. Во-первых, он должен в любом случае выводить лодку на глиссирование - пусть "туго" и с минимальной нагрузкой, а во-вторых, на полном газу "недобор" оборотов по сравнению с рекомендуемым производителем режимом не должен превышать 1000 об/мин. В противном случае есть риск, что доработки, которые придется осуществить в незапланированных масштабах, не принесут желаемого результата.

Ну а дальше, собственно, остается удалить с винта то, что мешает мотору раскрутиться до положенных оборотов. Уменьшать площадь лопастей можно двумя способами. При первом подрезаются их кромки, отчего лопасти превращаются в узкие "ножи" (рис. 4). Такой способ, к которому часто прибегают гонщики, Александр Беляевский для "потребительских" винтов не рекомендует, поскольку уменьшение дискового отношения сопряжено с рядом тонкостей. В частности, возможно заметное снижение приемистости и упора на промежуточных и разгонных режимах (наибольшая тяга при относительно невысоких оборотах обеспечивается как раз при большом дисковом отношении, и именно поэтому, например, при буксировке воднолыжников и парашютистов наиболее эффективны винты с широкими "лопухами" или четырехлопастные).



Рис. 4 Чтобы сделать этот гоночный винт, изменили не диаметр, а дисковое отношение - за счёт значительной подрезки выходных кромок. Площадь лопастей уменьшена по сравнению с исходным вариантом практически наполовину. Применять такой метод, "разгоняя" прогулочные лодки, не рекомендуется из-за уменьшения упора на переходных режимах.

Уменьшение площади лопастей за счет изменения диаметра - более спокойный и прогнозируемый вариант, да и технологически он проще.

Главное, как уже говорилось, действовать без спешки, постепенно, и не лениться проводить промежуточные испытания. По словам Александра Беляевского, уменьшение длины каждой из лопастей на 8-10 мм вызывает рост частоты вращения коленва-ла примерно на 250-300 об/мин. От размера самого винта это соотношение, как правило, не зависит, но постоянный контроль полученных результатов не повредит.

Разметку достаточно сделать только на одной из лопастей, лучше всего в три приема -вначале провести линию, более-менее соответствующую окружности уменьшенного диаметра (высокая точность тут не обязательна), потом "отхватить" небольшой участок входной кромки и завершить новую конфигурацию лопасти небольшим скруглением на конце выходной (рис. 5). Саму же выходную кромку, обычно снабженную отгибом-интерцептором, не трогайте ни под каким видом, предупреждает наш консультант!



Рис. 5 Предварительная разметка лопасти при уменьшении диаметра винта. Особая точность тут не требуется - просто попытайтесь повторить в уменьшенном виде существующую конфигурацию.

Далее лопасть-образец обрабатывается по контуру напильником (для быстроты черновую обработку можно сделать на наждачном круге), после чего ее очертания легко перенести на остальные при помощи простейшего бумажного шаблона. Александр делает это так: бумажная заготовка подгоняется к ступице (рис. 6), обжимается по контуру и обрезается ножницами по полученному "слепку" (рис. 7). Кстати, если руки слегка испачканы машинным маслом или алюминиевой пудрой, оставшейся после опиливания, контур получается более отчетливым.



Рис. 6 Вначале бумажную заготовку шаблона нужно подогнать к ступице.



Рис. 7 Самый простой способ перенести контуры лопасти на шаблон - это сделать бумажный "слепок".

После того, как по бумажному шаблону опилены остальные лопасти, винт можно установить на лодку и проконтролировать обороты на полном газу. Если по-прежнему наблюдается "недокрут", лопасти придется еще немного подрезать, а когда частота вращения в норме, их можно обработать вчистую, немного завалив острые кромки на концах и придав входным обтекаемую форму со стороны нерабочих поверхностей лопастей (рис. 8). До этого этапа у нас остается возможность "малой кровью" подкорректировать в сторону увеличения и шаг - если подпилить рабочие поверхности лопастей так, как показано на рис. 9. При аккуратной работе плоским напильником контроль на шаговой плите (рис. 10) может и не понадобиться, поскольку соответствующие кромки лопасти сами по себе служат надежными ориентирами.





Рис. 10 При доработке винта за счёт диаметра и дискового отношения шаговая плита не нужна, но если вы планируете расширить и усложнить свои эксперименты с винтами, это приспособление вам пригодится. Саму плиту можно заказать токарю или фрезировщику, но есть и иной способ - например, выпилить необходимые кольца или сегменты электролобзиком и наклеить их на твёрдую основу. Такой метод, кстати, обеспечивает и строго одинковую глубину канавок. При установке валика тоже необходима высокая точность, поскольку от него зависит параллельность плиты и плоскости вращения винта (для центровки обычно используют распорные конусные втулки). Опирать винт ступицей непосредственно на плиту не рекомендуется. Щаговые угольники должны располагаться в канавках строго перпендикулярно плите, поэтому их фиксируют пластилином.

Многие спрашивают, надо ли удалять литьевые выступы в корневой части лопастей у ступицы (рис. 11). По словам Александра Беляевского, это лишь напрасная трата сил и времени, поскольку расположены они в нерабочей зоне и на общее сопротивление влияния практически не оказывают. Полировка "потребительского" алюминиевого винта до блеска специальными пастами - тоже предрассудок. После обработки его достаточно ошкурить и по возможности покрасить водостойкой эмалью.



Рис. 11 Удалять литьевые выступы у ступицы нет смысла - они находятся в нерабочей зоне и практически не оказывают влияяния на общее сопративление. Полировка алюминиевого винта желаемой прибавки скорости тоже не даст.

Приступая к работам по "выжиманию скорости", не забывайте о том, что на этот показатель помимо характеристик гребного винта оказывают влияние и другие факторы. Прежде всего это относится к сопротивлению подводной части мотора, напрямую зависящему от того, насколько глубоко она погружена в воду. Кстати, пользуясь случаем, развенчаем распространенный миф о суперкавитирующих и полупогруженных винтах. Многие убеждены, что они хороши сами по себе и бьют обычные по всем параметрам, но на скоростных лодках, прежде всего гоночных, их используют, что называется, не от хорошей жизни - просто только с их помощью подводную часть подвесного мотора или угловую колонку удается поднять как можно выше из воды, уменьшая сопротивление.

В общем, перед тем, как дорабатывать винт, поэкспериментируйте с высотой установки мотора (как правило, транцевые крепления лодки переместить сложно, и действовать приходится в пределах, ограниченных шагом крепежных отверстий в подвеске мотора). Имейте в виду, что критичной зоной с точки зрения сопротивления является антикавитационная плита, которая должна располагаться либо выше, либо ниже среза транца, но ни в коем случае не совпадать с ним. (На легких лодках наш консультант советует любителям скорости устанавливать мотор так, чтобы она оказывалась на 2-3 см выше днища, хотя бывают и исключения). И хотя с точки зрения скорости, чем выше - тем лучше, здесь тоже стоит знать меру: при излишне поднятом моторе будьте готовы к целому ряду неприятных явлений, начиная от подхватов воздуха винтом в поворотах и заканчивая его быстрым разрушением под воздействием кавитации. Кроме того, это может вызвать и эффект, противоположный ожидаемому - из-за уменьшения длины рычага, образуемого колонкой, лодка может вяло реагировать на триммер и "рыть носом", в то время как наивысшая скорость обычно достигается при максимальном кормовом дифференте, когда лодка идет "на пятке".

Вкратце резюмируя основные положения нашей очередной консультации, повторимся: главное - это разумный и взвешенный подход, требующий постановки реальных задач и их последовательного решения. Быстрота, к которой мы стремимся на воде, в процессе работы способна только навредить. При этом полной гарантии успеха дать невозможно -в процесс вовлечено слишком много разнообразных факторов, полностью оценить которые вряд ли удастся даже владельцу конкретной лодки и мотора. Однако, как показывает опыт, взяв изложенные советы за основу, заметно улучшить скоростные характеристики мотолодки или катера более чем реально.






Что нужно знать о гребном винте
Гребной винт
Гребные винты, Общая информация




Как работает гребной винт? Гребной винт преобразует вращение вала двигателя в упор - силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей, обращенных вперед - в сторону движения судна (засасывающих), создается разрежение, а на обращенных назад (нагнетающих)— повышенное давление воды. В результате разности давлений на лопастях возникает сила Y (ее называют подъемной) Разложив силу на составляющие — одну, направленную в сторону движения судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т, образующую крутящий момент, который преодолевается двигателем.
Упор в большой степени зависит от угла атаки  профиля лопасти. Оптимальное значение для быстроходных катерных винтов 4—8°. Если a больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента, если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.
На схеме, иллюстрирующей характер взаимодействия лопасти и воды,  можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения Va винта вместе с судном и скорости вращения Vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.
Винтовая поверхность лопасти. На рисунке показаны силы и скорости, действующие в каком-то одном определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения V, зависит от радиуса, на котором сечение расположено (Vr = 2   r n, где n - частота вращения винта, об/с), скорость же поступательного движения винта Va остается постоянной для любого сечения лопасти. Таким образом, чем больше r, т. е. чем ближе расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость Vr, а следовательно, и суммарная скорость W.
Так как сторона Va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы a сохранял оптимальную величину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.
Представить сложную винтовую поверхность лопасти помогает рисунок. Лопасть при работе винта как бы скользит по направляющим угольникам, имеющим на каждом радиусе разную длину основания, но одинаковую высоту - шаг H, и поднимается за один оборот на величину Н. Произведение же шага на частоту вращения (Нn) представляет собой теоретическую скорость перемещения винта вдоль оси.
Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду, создавая попутный поток, поэтому действительная скорость встречи винта с водой Va всегда несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница невелика - всего 2 - 5%, так как их корпус скользит по воде и почти не “тянет” ее за собой. У катеров, идущих со средней скоростью хода эта разница составляет 5—8 %, а у тихоходных водоизмещающих глубокосидящих катеров достигает 15—20 %. Сравним теперь теоретическую скорость винта Нn со скоростью его фактического перемещения Va относительно потока воды .
Разность Hn - Va, называемая скольжением, и обуславливает работу по пасти винта под углом атаки  к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением: s = (Hn-Va)/Hn.
Максимальной величины (100 %) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8—15 %) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15—25%, у тяжелых водоизмещающих катеров 20—40 %, а у парусных яхт, имеющих вспомогательный двигатель, 50 - 70%.
Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.
Каждый двигатель имеет свою так называемую внешнюю характеристику - зависимость снимаемой с вала мощности от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного мотора “Вихрь”, например, показана на рисунке (кривая 1). Максимум мощности в 21,5 л, с. двигатель развивает при 5000 об/мин.
Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора, показана на этом же рисунке не одной, а тремя кривыми - винтовыми характеристиками 2, 3 и 4, каждая из которых соответствует определенному гребному винту, т. е. винту определенного шага и диаметра.
При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке А. Это означает, что двигатель уже достиг предельного - максимального значения крутящего момента и не в состоянии проворачивать гребной винт с большой частотой вращения, т. е. не развивает номинальную частоту вращения и соответствующую ей номинальную мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. с. мощности вместо 22 л. с. Такой гребной винт называется гидродинамически тяжелым.
Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двигатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.
Гребной винт, позволяющий для конкретного сочетания судна и двигателя полностью использовать мощность последнего, называется согласованным. Для рассматриваемого примера такой согласованный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.
Рисунок иллюстрирует важность правильного подбора винта на примере мотолодки "Крым" с подвесным мотором “Вихрь”, При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел, скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Наилучшие же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1,0 (шаг и диаметр равны 240 мм): максимальная скорость повышается до 40—42 км/ч, скорость с полной нагрузкой — до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути, то при установке винта с шагом 240 мм расход горючего составит 237 г/км.
Следует заметить, что согласованных винтов для конкретного сочетания судна и мотора существует бесконечное множество. В самом деле, винт с несколько большим диаметром, но несколько меньшим шагом нагрузит двигатель так же, как и винт с меньшим диаметром и большим шагом. Существует правило: при замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение допустимо не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.
Однако из этого множества согласованных винтов только один винт, с конкретными значениями D и H, будет обладать наибольшим КПД. Такой винт называется оптимальным. Целью расчёта гребного винта как раз и является нахождение оптимальных величин диаметра и шага.
Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя.
Не вдаваясь в подробности, отметим, что главным образом КПД некавитирующего винта зависит от относительного скольжения винта, которое в свою очередь определяется соотношением мощности, скорости, диаметра и частоты вращения.
Максимальная величина КПД гребного винта может достигать 70 ~ 80 %, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45 %.
Максимальной эффективности гребной винт достигает при относительном скольжении 10 - 30 %. При увеличении скольжения КПД быстро падает: при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.
Однако следует еще учесть взаимовлияние корпуса и винта. При работе гребной винт захватывает и отбрасывает в корму значительные массы воды, вслед ствие чего скорость потока, обтекающего кормовую часть корпуса повышается, а давление падает. Этому сопутствует явление засасывания, т. е. появление до полнительной силы сопротивления воды движению судна по сравнению с тем, которое оно испытывает при буксировке. Следовательно, винт должен развивать упор, превышающий сопротивление корпуса на некоторую величину Рe = R/(1-t) кг. Здесь t — коэффициент засасывания, величина которого зависит от скорости движения судна и обводов корпуса в районе расположения винта. На глиссирующих катерах и мотолодках, на которых винт расположен под сравнительно плоским днищем и не имеет перед собой ахтерштевня, при скоростях свыше 30 км/ч t = 0,02—0,03. На тихоходных (10—25 км/ч) лодках и катерах, на которых гребной винт установлен за ахтерштевнем, t = 0,06—0,15.
В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w: Va = V (1—w) м/с. Значения w нетрудно определить по данным, приведенным выше.
Общий пропульсивный КПД комплекса судно—двигатель—гребной винт вычисляется по формуле:
  p ((1-t)/(1-w))m p k m
Здесь p - КПД винта; k — коэффициент влияния корпуса; m — КПД валопровода и реверс - редукторной передачи.
Коэффициент влияния корпуса нередко оказывается больше единицы (1,1 - 1,15), а потери в валопроводе оцениваются величиной 0,9—0,95.
Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра и шага винта существуют упрощенные формулы, приводить которые здесь нет смысла, т.к. предлагается воспользоваться более точными методами расчёта оптимального винта. Эти методы основаны на апроксимации (приближённом представлении) графических диаграмм аналитическими зависимостями, что позволяет выполнять достаточно точные расчёты на ЭВМ и даже на микрокалькуляторах.
Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5 % с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для "облегчения" винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.
Однако для винтов маломерных судов этого можно и не делать. Причина проста: загрузка прогулочных судов меняется в широких пределах, и винт, немного "тяжеловатый" или "легковатый" при одном значении водоизмещения судна, станет согласованным при другой загрузке.
Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения мотолодок и катеров и частота вращения винтов становятся причиной кавитации - вскипания воды и образования пузырьков паров в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.
При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость - каверна, захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.
Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.
Момент наступления кавитации зависит не только от частоты вращения но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. раньше наступает кавитация. Появлению кавитации способствует также большой угол наклона гребного вала, дефекты лопастей — изгиб, некачественная поверхность.
Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение на засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация (т. е. на быстроходных катерах и при большой частоте вращения гребного вала).
В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Аd сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.
Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0,3 - 0,6. У сильно нагруженных винтов на быстроходных катерах с мощными высокооборотными двигателями A/Ad увеличивается до 0,6 - 1,1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.
Ось гребного винта на глиссирующем катере расположена сравнительно близко к поверхности воды, поэтому нередки случаи засасывания воздуха к лопастям винта (поверхностная аэрация) или оголения всего винта при ходе на волне. В этих случаях упор винта резко падает, а частота вращения двигателя может превысить максимально допустимую. Для уменьшения влияния аэрации шаг винта делается переменным по радиусу - начиная от сечения лопасти на r = (0,63—0,7) R по направлению к ступице шаг уменьшается на 15~20%.
Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается па КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму —от 10 до 15° .
В большинстве случаев лопастям винтов придается небольшая саблевидность - линия середин сечений лопасти выполняется криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность входящих кромок.
Наибольшее распространение среди винтов малых судов получил сегментный плосковыпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукловогнутый профиль ("луночка"). Стрелка вогнутости профиля принимается равной около 2 % хорды сечения а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0,6R) принимается обычно в пределах t/b = 0,04—0,10.
Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно - моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами.
Четырех и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и вибрации корпуса.
Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в связи с этим обтекаемого "косым" потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается при угле наклона гребного вала к горизонту больше 10°.
Выбор оптимального гребного винта
Гребной винт
Моторы » Гребные винты




Вспоминая первый год моих занятий гонками на катерах, я просто поражаюсь своей наивности. Хотя перед тем я провел много времени, изучая всякие мелочи в конструкции лодки, я попросту упустил из виду три важнейших момента, которые влияют на характеристики любой лодки — минимум веса, максимум возможной мощности и наиболее подходящий винт.

Хотя с той поры конструкции лодок и моторов невероятно улучшились, но важность этих трех элементов абсолютно не изменилась.

Владельцы семейных лодок, скорее всего, не будут перестраивать вновь купленную лодку для ее облегчения и покупать дорогой лодочный мотор, чтобы добавить скорости. Однако каждый из них вполне может заменить гребной винт — на более подходящий.

Давайте посмотрим, как же правильно выбрать и применять гребной винт для улучшения характеристик современной прогулочной лодки.

Терминалогия

Чтобы выбрать подходящий гребной винт, сначала нужно познакомиться с терминами. На самом деле в терминологии ничего сложного нет, да и как же будет здорово козырнуть в компании приятелей словечком «отношение диаметра к площади»!

Размеры гребного винта определяют двумя цифрами. Первая — диаметр. Если у винта две или четыре лопасти, то достаточно просто измерить расстояние между кончиками противостоящих лопастей.

Если у винта три или пять лопастей, то следует замерить расстояние от центра втулки до кончика любой лопасти и умножить это число на два.

Вторая цифра — шаг, т.е. теоретическое расстояние (в принятых единицах — см или дюймах), на которое винт продвинется за один полный оборот.

Итак, если имеется винт диаметром 35 см и шагом 53 см, то конфигурацию винта записывают как «35×53». Центральную часть гребного винта называют «втулка». Втулка служит для центровки винта на приводном валу.

У винтов, через которые двигатель выбрасывает выхлопные газы, как это принято в большинстве современных подвесных моторов и кормовых приводов, вокруг втулки имеется обойма, к которой и крепятся лопасти.

Как работают гребные винты?

Лопасти винта толкают воду в одном направлении, а лодка движется в противоположном направлении («каждому действию имеется равно и противоположно направленное противодействие»).

Вращаясь и толкая воду назад, лопасти гребного винта также создают разрежение на передней поверхности каждой лопасти. Это разрежение столь сильно, что на это поверхности начинают взрываться пузырьки воздуха, которые обдирают краску с винта.

Это происходит при вовлечении воздуха в процесс в форме кавитации или вентиляции. Не все понимают разницу между кавитацией и вентиляцией.

Вентиляция возникает, когда пузырьки воздуха от дна или транца лодки начинают поступать к винту и окружают его. То же случится, когда винт захватывает кончиками лопастей воздух с поверхности.

Кавитация возникает, когда гребной винт крутится сам по себе (наподобие пробуксовывания колес машины в грязи) и создает воздушные пузырьки на передней поверхности лопастей.

Безошибочный признак вентиляции и кавитации — резкое возрастание скорости вращения гребного винта. Для устранения этого явления следует уменьшить обороты двигателя, пока винт не войдет в соприкосновение с водой.

На что влияет форма лопасти винта?

Лопасти могут иметь самую разнообразную форму. Наиболее распространены лопасти типа «круглое ухо» и эллиптические. Такие гребные винты обеспечивают оптимальное соотношение тяги и скорости.

Лопасти других винтов сужаются к кончикам. Это уменьшает трение и, обычно такие лопасти ставят на винты скоростных судов.

Есть и такие винты, у которых имеется наклеп на хвостовой кромке лопастей. Эти узкие полоски наклепа помогают отсечь воду от лопасти, что улучшает тягу и повышает сцепление с водой для уменьшения проскальзывания (количество неэффективного вращения винта, измеряемое в процентах).

К примеру, гребной винт с шагом 63 см сделав четыре полных оборота, теоретически должен будет продвинуть лодку на 256 см. На практике же, он сможет продвинуть лодку всего на 228 см. Проскальзывание в таком случае составит 10%.

Если лопасть отходит прямо от втулки, или даже если перпендикулярно к ней, то такой гребной винт имеет нулевой гребок. Лопасти с нулевым гребком обеспечивают оптимальный подъем носа лодки, который никак не хочет подниматься при глиссировании.

Если лопасть наклонена к хвостовой кромке винта, то это и есть гребок. Если лопасть наклонена в обратную сторону, то говорят, что винт имеет сильный гребок.

Такой гребок измеряют в градусах и, как правило, чем больше гребок, тем больше подъем нос лодки.

Серповидные или полусерповидные винты можно узнать по прямой выходной кромке лопастей. Такая форма предотвращает засасывание воды, и кончики лопастей не захватывают воздух с поверхности, не допуская вентиляции.

Пониженное сопротивление движению приповерхностных винтов позволяет при той же установленной мощности достигать более высокой скорости вращения.

Винты, лопасти которых закручены в направлении вращения, называются косыми. Такая форма идеально подходит для движения в заросших водоемах, поскольку такие лопасти не склонны накручивать водоросли.

Латунные, алюминиевые или стальные гребные винты

Первоначально гребные винты делали из латуни, но и сегодня их используют в сотнях разных размеров для применения самых различных судах со стационарными моторами.

За последние несколько лет приобрели популярность винты из латуни с упрочняющей добавкой никеля. Такой материал называют Нибрал. Следует иметь в виду, что гребные винты для стационарных моторов весьма специфичны, и в разгар сезона их подобрать весьма непросто.

Для подвесных моторов и кормовых приводов производители обычно используют алюминиевые винты, поскольку они дешевле, быстрее (латунных) и легче. Последние достижения в технологии, усовершенствование конструкции и производства винтов из алюминия дали такие превосходные результаты, что их характеристики ни в чем не уступают их цене. Именно поэтому на большинстве небольших лодок установлены такие винты из алюминия.

Винты из полированной нержавеющей стали — лучший выбор, когда, прежде всего, нужны прочность и эффективность. Поскольку стальные винты в семь раз прочнее алюминиевых, то изготовители могут делать винты значительно тоньше без ущерба для их прочности и жесткости.

К несчастью, если Ваша лодка несет мощный гоночный винт с несъемной втулкой, то винт из стали может выдержать удар о подводное препятствие, но этот же удар может разнести редуктор.

В этом причина широкого внедрения пластиковых втулок, которые при ударе или заклинивании винта прокрутятся или срежутся, как это происходит с алюминиевыми втулками.

Распространены два типа стальных винтов: полированные и шлифованные (менее полированные). Несмотря на распространенное мнение, полировка винта не имеет отношения к его характеристикам. В количественном отношении стальные винты примерно вдвое превосходят винты алюминиевые.

Наиболее современные винты делают из композитных материалов. Благодаря достижениям химии, нейлоновые и углеродные волокна широко применяются в судостроении.

Кроме повышенной, относительно алюминия, прочности, — винты из композитных материалов не подвержены коррозии, а потому поставляются с пожизненной гарантией на втулку или даже со сменными лопастями. По цене они очень близки к алюминиевым винтам.

Сколько нужно лопастей на гребном винте?

Мне часто задают вопрос «Для чего нужен винт с тремя, четырьмя лопастями?» Хотя четкого правила нет, но аналогия поможет упростить и понять.

По мере увеличения размера лопасти или увеличением количества лопастей, увеличивается так называемое отношение диаметра к площади. Хотя увеличение площади лопастей увеличивает площадь действия сил, толкающих судно, но увеличивается и трение.

Вообразите широкие колеса автомобиля, и сравнение будет полным. Чтобы уменьшить трение, создаваемое лопастями, лопастей должно быть меньше (но не меньше двух, разумеется).

В последние годы существенно возросла мощность лодочных моторов, а конструкторы корпусов современных лодок нашли новые методы уменьшения трения смачиваемой поверхности за счет использования облегченных и композитных материалов, а также придания «ступенчатой» формы днищу лодки.

В итоге стало возможным применение четырех лопастных винтов.

Если судно и установленный лодочный мотор способны работать с четырех лопастным гребным винтом, то станут доступными еще несколько полезных достоинств. У четырех лопастного винта количество противостоящих лопастей равно, что делает его работу ровной, позволяет быстрее разгоняться с холостого хода, уменьшает минимальную скорость выхода лодки на глиссирование, и даже экономит топливо при движении на крейсерском (экономичном) ходе.

Некоторые водномоторники переходят на четырех лопастные гребные винты только из-за одного этого. Следует помнить, что максимальная скорость судна в общем случае не возрастет, а иногда даже слегка уменьшится.

В общем, по моему опыту, вывод относительно количества лопастей можно сделать такой: суда длиной более 7 метров вроде легких круизных яхт в общем случае ведут себя лучше с четырех лопастными гребными винтами.

Во всех других случаях — берегите свой трехлопастной винт, и Вы сбережет деньги.

Многие покупатели новых лодок или подвесных моторов уверены, что производитель сразу же ставит наиболее подходящий гребной винт.

К сожалению, это далеко не всегда верно. Когда мы покупаем автомобиль, то покрышки на нем изготовитель автомобиля ставит такие, какие подходят для среднего подобного автомобиля в обычной дорожной обстановке.

Производители лодок, разумеется, не имеют представления о том, как Вы предполагаете использовать купленное плавсредство. Поэтому нет никакой гарантии, что комплектный гребной винт лодки подойдет к любому ее применению, которое Вам может потребоваться.

Некоторые винты одинакового размера ведут себя по-разному, тогда как разные винты разных размеров могут давать одинаковые результаты. Отсюда первый вывод из проведенных тестов.

Чтобы подобрать наиболее подходящий винт, нужно попробовать разные винты!

Можно также заметить, что один гребной винт может иметь преимущества в одной области, но проигрывать в другой. Возможно, это наиболее существенный вывод, который основывается на практическом опыте.

Так что, выбирая винт, решение следует принимать по наиболее важным для Вас характеристикам винта. Анализируя характеристики, следует иметь в виду, что у разных винтов лопасти разной формы. Можно выбрать винт, эффективно создающий подъем носа лодки, прежде всего винты для рыбацких лодок, а можно выбрать винт для прогулочных катеров, которые, прежде всего, создают оптимальную тягу.

Ремонт алюминиевого винта или покупка бывшего в употреблении винта — это плохое вложение денег, поскольку при ремонте винт нужно сначала накалить. Нагрев меняет молекулярную структуру материала, резко его ослабляя.

Даже если Вы всего лишь спрямляете зазубрины или обрезаете лопасти, то Вы тем самым меняете их форму (вместе с характеристиками всего винта).

Винты из нержавеющей стали, с другой стороны, равно как и винты из композитных материалов, можно надежно ремонтировать, так что им вполне можно вернуть первоначальные характеристики. А можно просто сменить лопасти как на винтах Turning Point.

И есть еще один важный вывод. Некоторые эксплуатационные характеристики новейших алюминиевых и композитных винтов волне могут вполне конкурировать с аналогичными параметрами более дорогих стальных винтов.

Однако винты из нержавеющей стали как по сумме характеристик, так и по прочности все равно будут лучше. В общем случае, также четырех лопастные гребные винты быстрее разгоняют судно, чем трехлопастные и предназначены для глиссирования на меньших скоростях.

Винты из композитных материалов прекрасно ведут себя в любых условиях и, кроме того, позволяют быстро менять лопасти.

Выбрав материал и дизайн винта, Вам следует определиться с его размером.

Если нужно больше тяги для тяжелогруженой лодки или для буксировки, то берите винты большего диаметра, как более широкие шины для автомобиля.

Если же нужна только быстроходность, то выбирайте винт увеличенного шага, но меньшего диаметра, чтобы мотор смог создать требуемые обороты.

Всегда записывайте обороты, скорость хода и размер испытуемого винта. Если испытывать собираетесь несколько винтов, то выбирайте для начала винт, размер которого лучше всего обеспечивает обороты мотора, рекомендованные изготовителем.

Представляйте всегда диаметр и шаг как две чашки весов, которые нужно сбалансировать. Если достигнуты максимальные возможные обороты лодочного мотора, то можно только увеличивать шаг при уменьшении диаметра, или увеличивать диаметр, соответственно уменьшая шаг.

Я же, со своей стороны, хочу Вам дать три важных совета:

ЛУЧШЕЕ — ВРАГ ХОРОШЕГО!

Имейте в виду, что для подбора оптимального винта для казалось бы обычной лодки нужно пробовать разные гребные винты.

ПРОБОВАТЬ!

Когда в ходе испытаний станет ясно, какого типа гребной винт оптимально подходит к Вашей лодке, то после этого следует перепробовать наибольшее количество винтов найденного типа.

Не стесняйтесь экспериментировать. Время, которое будет потрачено на тесты разных винтов, позволит Вам лучше почувствовать лодку, сэкономит топливо в будущем и, принесет больше удовлетворения

НЕ УСТУПАЙТЕ!

Винт — не та вещь, на которой имеет смысл зарабатывать или экономить деньги. Несколько лишних долларов, которые приблизят Вас к лучшему, для Ваших же потребностей, гребному винту — не бойтесь их потратить!

Они, безусловно, окупятся, — и через комфорт, и через экономию топлива.

Гребной винт — это важнейшая часть оборудования, отвечающего за приведение Вашей лодки в движение. Следуйте нашим рекомендациям, и Вы обязательно повысите эксплуатационные характеристики своей лодки.
 
Поговорим о винтах
А нафига покупать винт 12" шага под груженую лодку? Все равно мотор не вытянет обороты. Есть винты 11", 10", 9" шагов под увеличивающююся загрузку.
Yamaha выдаёт максимальную мощность в диапазоне 4500-5500. Производители клонов так же указывают. Так что вопрос, на каком винте при той же мощности скорость будет больше 10" при 5300, или 11" при 5000, или 12" при 4800 (на всякий - цифирки примерные).
У меня есть Turning Point 9х10", который под максимальными нагрузками вне конкуренции. Штатный китайский на 9,25х11" даже "на ощупь" вызывает сильные сомнения насчет КПД, хотя один-два человека идет быстрее первого. Я его уже маленько попилил – сделал потоньше входящие кромки лопастей, но для дальнейших экспериментов надо иметь замену на случай «провала затеи». Хотел Ямовский взять на 11" для себя одного с рыбацкими шмотками, да цена пока останавливала. А тут за 2000 вопрос с ценой отпал, правда на 12", но раз такой заявленый широкий диапазон максимальной мощности...
В общем я к тому так длинно, что проверять надо всё на практике. Весной проверю.
 
Поговорим о винтах
Сальдо
+1
тоже весной проверю этот винт 9,25*12''-J1
на комплекте:
Yamaha 15 2Т + лодка Mercury 340 sport (57кг сухого веса)
 
Поговорим о винтах

Yamaha выдаёт максимальную мощность в диапазоне 4500-5500. Производители клонов так же указывают. Так что вопрос, на каком винте при той же мощности скорость будет больше 10" при 5300, или 11" при 5000, или 12" при 4800 (на всякий - цифирки примерные).
У меня есть Turning Point 9х10", который под максимальными нагрузками вне конкуренции. Штатный китайский на 9,25х11" даже "на ощупь" вызывает сильные сомнения насчет КПД, хотя один-два человека идет быстрее первого. Я его уже маленько попилил – сделал потоньше входящие кромки лопастей, но для дальнейших экспериментов надо иметь замену на случай «провала затеи». Хотел Ямовский взять на 11" для себя одного с рыбацкими шмотками, да цена пока останавливала. А тут за 2000 вопрос с ценой отпал, правда на 12", но раз такой заявленый широкий диапазон максимальной мощности...
В общем я к тому так длинно, что проверять надо всё на практике. Весной проверю.

Пользую этот винт(12-J1) второй сезон на Ям15 2Т с Касаткой 365, Викингом -360, викингом-320 и прочих лодках. В своем первозданном виде под этот мотор он очень тяжелый, на 360-й ПВХ крутится не более 5100-5150 об/мин., скорость 40-41км/ч, точно такая-же как со штатным 11-ым при 5500-5600 об/мин. На Рибах Скаут-380 и Аквариус-330 он раскрутился до 5500 и скорость 50км/ч. Все данные с одним мной(90кг) + бензин+10-15кг поклажи. По сравнению с 12-J он слишком "лопухастый" , что видно на фото выше. Поэтому подпиливал его в течении этого сезона раза 3 по чуть чуть . Т.к. большого опыта в этом ремесле нету, просто старался чтобы лучшее не стало врагом хорошего.:D. Подпиленный на Викинге-320 бегает 46-47, на Ротане 380К 47-48км/ч, На Касатке-365 с пластиковой пластиной 45-46км/ч. О пластине задумался после того,как более тяжелый Скаут-380 побежал 50.:tanz:, вот он жесткий корпус с правильными обводами:thumbupq:.После летних покатушек в Эмаусе я задумался над вопросом :
можно-ли приблизить характеристики ПВХ лодки к
показателям жесткого корпуса. На Касатке 365 под Ямахой 15
с 11 винтом я максимум разгонялся 42км/ч, что
замечательный показатель для подобных комплектов.При
установке 12-го винта недокрут 400 об. и максималка
40.5. На Скауте-380(который тяжелее Кс365) с 11-ым винтом
явный перекрут, а с 12-м скорость под 50км/ч,
причем мотор на 4-ой (последней) дырке.
Из различных форумов и общения с водномоторниками я знаю
,что натяжка днища очень важна для ПВХ корпусов,
особенно в районе транца. Но даже при идеальной натяжке, у
транца можно пальцем продавить дно на 1-1,5см.,
т.е. поток воды в любом случае образует горбинку перед
транцем,на преодоление которой затрачивается лишняя
энергия и срыв потока не идеален. Установив подобную
пластину(лист пластика толщ. 7мм) я немного уменьшил
эти потери. Максимальный результат с 12-м винтом(стал
больше раскручиваться) максимальная 46,8км/ч средняя
устойчивая 45.4, в поворотах прохваты, по прямой нормально.
Моё ИМХО, без доводки он мало интересен.
 

Вложения

  • IMG_0009.jpg
    41.6 КБ · Просмотры: 1 829
    IMG_0009.jpg
  • IMG_0014.jpg
    36.7 КБ · Просмотры: 1 781
    IMG_0014.jpg
  • IMG_0015.jpg
    47 КБ · Просмотры: 1 765
    IMG_0015.jpg
Поговорим о винтах
Подпиленный на Викинге-320 бегает 46-47, на Ротане 380К 47-48км/ч, .
Этот винт, доведеный до ума на Ротане 380К под Ямой 15 совершенно спокойно отдает 50 км\ч. Винт 9,25 х 12" -J то же самое отдает без доводок.
 
Поговорим о винтах
Радует, что уже есть положительный опыт доводки этого винта опытными водномоторниками. Может и у любителя типа меня получится. Надо опять поднять пару статеек. А может где-то уже были фотки именно этого доработанного? Подскажите, пож.
 
Поговорим о винтах
Этот винт, доведеный до ума на Ротане 380К под Ямой 15 совершенно спокойно отдает 50 км\ч. Винт 9,25 х 12" -J то же самое отдает без доводок.

Алексей, у вас огромный опыт доработки винтов. Подскажите, может существует какой нибудь шаблон, приложив который к лопасти можно обрисовать и сточить все лишнее, получив таким образом идеальный правильный винт. Интересует именно этот ямаховский на 12.
 
Поговорим о винтах
Алексей, у вас огромный опыт доработки винтов. Подскажите, может существует какой нибудь шаблон, приложив который к лопасти можно обрисовать и сточить все лишнее, получив таким образом идеальный правильный винт. Интересует именно этот ямаховский на 12.
Сергей, приветствую!
Для такой задачи нужно наверное сделать слепки лопастей.
Я, доведя такой винт до приемлемой для себя стадии просто клонирую его при необходимости.
Ну и говорить об "идеальном" винте некорректно. Только о переделанном. Было бы несколько одинаковых винтов для переделок и время на испытания, можно было бы приблизиться к лучшему результату. А так .....
И еще, винт, наиболее подходящий для одного комплекта не обязательно будет таковым для другого.
 
Поговорим о винтах
Этот винт, доведеный до ума на Ротане 380К под Ямой 15 совершенно спокойно отдает 50 км\ч. Винт 9,25 х 12" -J то же самое отдает без доводок.
Алексей, я подпиливал этот винт(12-J1) раза 3, уменьшая по диаметру и лопухатости, соблюдая только симетрию по всем трем лопостям. Скорее всего завалил входную кромку, возможно изменил шаг( до 11.7 например),. То,что он сейчас работает лучше, чем оригинал это просто везение. Испортить винт, не имея практических навыков и минимального набора оборудования, очень просто:yes:. Поэтому полностью согласен с Вами, лучше сразу брать 9,25 х 12" -J и голову не ломать. Свой я выменял на солас 10", который мне совсем никуда не подходил. Коли покупать, то только 9,25 х 12" -J:thumbupq:.
 
Поговорим о винтах
Алексей, я подпиливал этот винт(12-J1) раза 3, уменьшая по диаметру и лопухатости, соблюдая только симетрию по всем трем лопостям. Скорее всего завалил входную кромку, возможно изменил шаг( до 11.7 например),. То,что он сейчас работает лучше, чем оригинал это просто везение. Испортить винт, не имея практических навыков и минимального набора оборудования, очень просто:yes:. Поэтому полностью согласен с Вами, лучше сразу брать 9,25 х 12" -J и голову не ломать. Свой я выменял на солас 10", который мне совсем никуда не подходил. Коли покупать, то только 9,25 х 12" -J:thumbupq:.

Оно конечно лучше, да только если б на Е-БЭЕ еще было указано J1, то я бы себе задал вопрос покупать именно его или нет.
По фото теперь уже, немного разобравшись, смогу отличить J от J1.
Надеюсь повезет и будет не хуже 11-J для моего комплекта.
В общем испытания покажут. Обещаю отписаться по результатам.
Ждем жидкую воду! )))
 
Поговорим о винтах
Вот для переделки в 13" шага винт 9,25 х 12 -J1 подошел хорошо. Р 380К под Х20 с этим винтом идет за 60 км\ч. Но запытывали именно этот комлект. Правда еще вешали на эту лодку Ямаху Валентина (WAL), переделанную из Я 9,9 с этим же винтом. Иван Савадж привез 60,5 км\ч.
 
Поговорим о винтах
Вот что интересно. Родной ямаховский винт на 11 идет с маркировкой J, но с такими же лопухами как J1 на 12 винте. Так и должно быть? И существует ли винт с 11 шагом но формой как J 12го винта?
 

Сейчас смотрят

Назад
Вверх